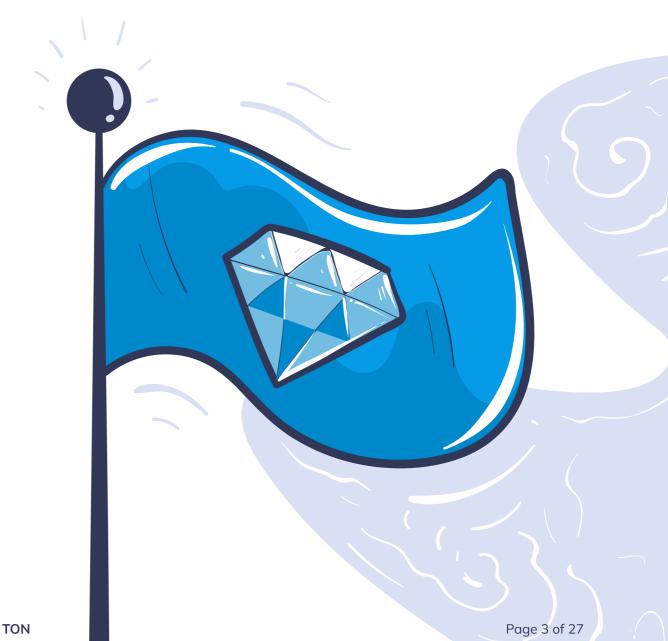


The Open Network

The next gen network to unite all blockchains and the existing Internet

Table of Contents

Introduction	
Key Components	
TON Blockchain	
TON Commandments	
TON Timeline	
Toncoin History	
Toncoin Factsheet	
Getting Toncoins	
Toncoin Uses	12
Toncoin Roadmap	13
TON Nominators	
TON Foundation	
Governance	
Roadmap	
Appendix: How Proof-of-Stake works	18
Appendix: Bridge operation principle	21
Appendix: How mining works in TON	
Links	


 ∇

Introduction

This primer outlines a vision for The Open Network: a blockchain-based network restored and continuously developed by an open-source community.

Apart from processing millions of transactions per second, TON blockchain-based ecosystem has all the chances to give rise to a genuine Web3.0 Internet with decentralized storage, anonymous network, DNS, instant payments and various decentralized services.

TON architecture is designed to enable merging all existing blockchains into a single decentralized network.

Key Components

TON Blockchain Launched

The backbone of The Open Network is a scalable multi-blockchain that is designed to process millions of transactions within seconds. It uses the Proof-of-Stake consensus and can contain up to 2⁹² accompanying blockchains.

TON Payments 90% Ready

TON Payments is a platform for micropayments and a micropayment channel network. It can be used for instant off-chain value transfers between users, bots, and other services. Safeguards built into the system ensure that these transfers are as secure as on-chain transactions.

TON Proxy

75% Ready

TON Proxy is a network proxy/anonymizer layer for TON nodes. Similar to I2P, it allows building decentralized VPN services and blockchain-based TOR alternatives to achieve anonymity and protect online privacy. Combined with the TON P2P Network and TON DNS, TON Proxy gives decentralized apps immunity to censorship.

TON DNS 90% Ready

TON DNS makes blockchain mainstream by assigning human-readable names to accounts, smart contracts, services and network nodes. With TON DNS browsing blockchain becomes similar to surfing the World Wide Web.

TON Storage 50% Ready

TON Storage is a distributed file-storage technology accessible through the TON P2P Network. Think a better version of Dropbox for simplicity. This torrent-like technology relies on smart contracts for availability and has a strong potential with regard to storing and exchanging large amounts of data.

TON Services Launched

TON Services provides a versatile platform for third-party services. It enables smartphone-like friendly interfaces for decentralized apps and smart contracts, as well as a World Wide Web-like decentralized browsing experience.

TON provides a searchable registry of decentralized services and applications.

TON Workchains 50% Ready

TON consists of the masterchain and up to 2³² workchains with different rulesets, i.e. different formats of account addresses and transactions, virtual machines for smart contracts and basic cryptocurrencies, etc. Yet, workchains can still interact using consistent basic rules.

Today there is a wide variety of operating blockchains that are loosely connected to one another. Current attempts to use Bridging to establish interaction between them leave much to be desired in terms of both performance and decentralization levels. TON design will allow pooling all existing blockchains into a unified decentralized network.

TON

TON Blockchain

The heart of the platform is the unique blockchain with a scalable and flexible architecture consisting of a master chain and up to 2⁹² accompanying blockchains. Top-notch approaches and methods implemented in TON make sure it will live up to its bold promise of processing millions of transactions per second.

Infinite Sharding Paradigm

Scalability was the Holy Grail previous blockchains failed to find. TON achieves it through sharding as blockchains in it can automatically split and merge to accommodate load changes. Thus block generation speed remains unaffected by the transaction volume, no queues build up and costs remain low regardless of the demand.

Instant Hypercube Routing

Smart routing mechanisms ensure swift exchange between any two blockchains regardless of the network size. Given the logarithmic relation between data transfer time and number of blockchains in TON, scaling to even millions of chains is possible without impairing the processing speed.

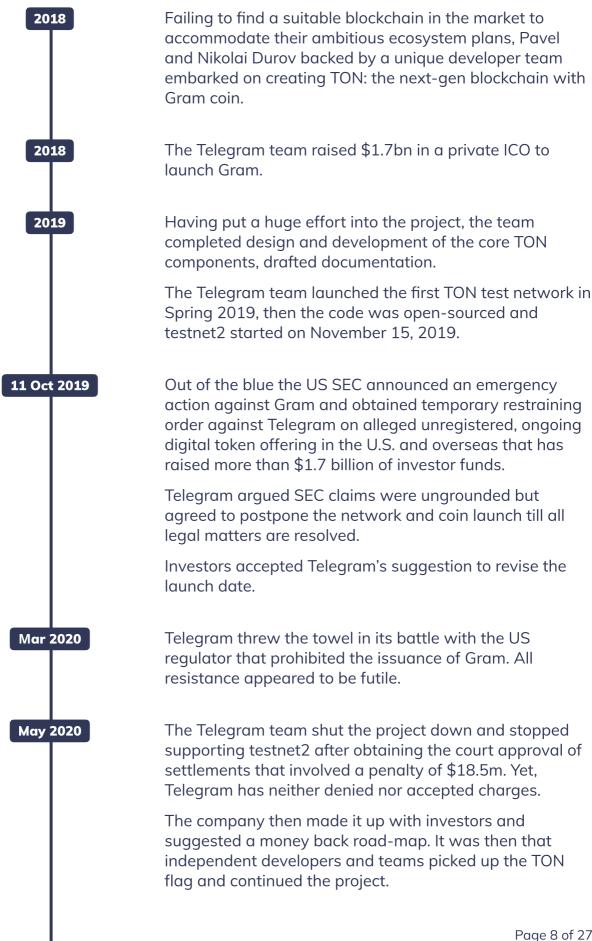
Proof-of-Stake Consensus

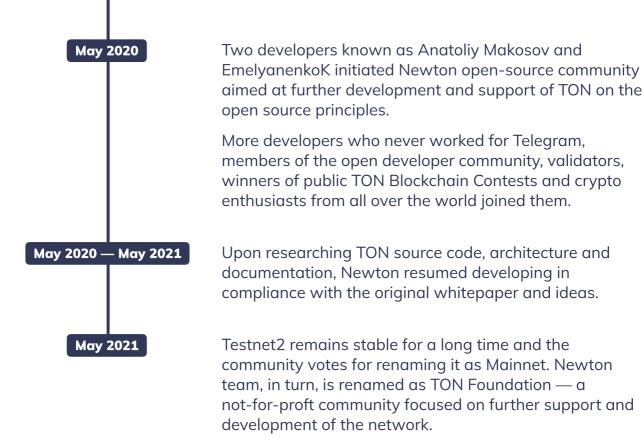
TON relies on the advanced Proof-of-Stake consensus where validator nodes use deposit stakes to guarantee their dependability and reach consensus through a variant of the Byzantine Fault Tolerant protocol. This resource saving mechanism enables TON to focus nodes computing power on handling transactions and smart contracts further increasing speed and efficiency.

2D Distributed Ledgers

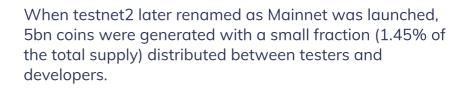
To avoid unnecessary forks, TON can grow new valid blocks on top of any invalidated blocks. This self-healing mechanism saves resources and guarantees that valid transactions are not discarded due to unrelated errors.

ΤΟΝ




TON Commandments

Exchanging value should be as easy as exchanging information and blockchain technology ideally service the purpose. With this goal in mind we worded the key principles of TON design and development:


- **Speed and scalability** to process millions transactions per second, accommodating an unlimited number of active users and sustaining operations of numerous apps.
- **Intuitive user interfaces** to make blockchain about people, not geeks and nerds, to help everyone buy, store and transfer assets in a convenient, familiar way.
- **Decentralization** to ensure reliability, stability and safety and to take steps towards a safer, self-governed world.

TON Timeline

Toncoin History

After the court ruling prohibiting Gram, the Telegram team gave up TON blockchain development with the most part of testnet2 coins (98.55% of the total supply) transferred to Proof-of-Work Giver smart contracts. So, mining coins is only possible through calling these smart contracts which takes a solid computation capacity.

At the point when testnet2 was renamed as Mainnet coins had already been organically distributed between a large number of various users. The price was determined by the cost of mining hardware.

1

2

Toncoin Factsheet

As of 15 Jun 2021

Distribution of Toncoins reminds the way coins were organically distributed in early days of the Bitcoin network. In other words, no ICOs or airdrops took place.

Total coin supply

73M

PoW Givers' holdings 70,172

Total account number

Total validators' stake

16.4M

TON Foundation holdings

The annual inflation rate derived from the fundamental parameters of TON is 0.6%. This inflation represents a payment made by all members of the community to the validators for keeping the system functional.

Page 10 of 27

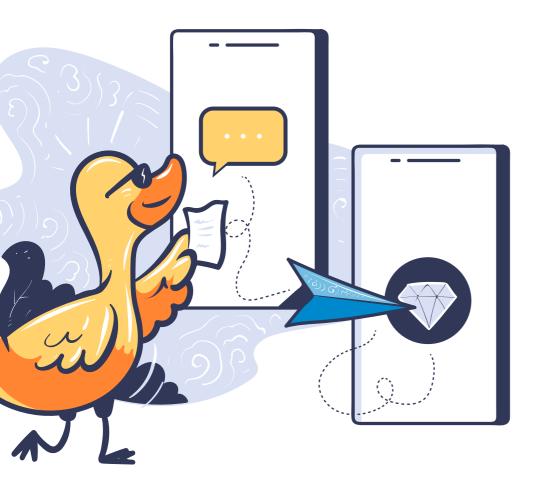
Getting Toncoins

Hurry up to mine before PoW Givers are not dry

<u>Use bridge</u> if you have Wrapped TONCOIN in Ethereum or BSC

Become a validator and get your revenues 0 5 6

Buy/exchange Toncoins at third-pary services.


Wait for TON Storage, TON Proxy and TON DNS

to join them and earn coins

Toncoin Uses

As the ecosystem expands, we see a huge potential of Toncoin and numerous ways for it to work in the new economy. We expect it to go beyond a means of payment.

- Stakes deposited by validators to be eligible to validate transactions and generate new blocks and coins.
- Voting power to support or oppose changes in the parameters of the protocol.
- Income (gas) paid to validator nodes as reward for processing transactions and smart contracts under the PoS consensus.
- Loans to validators extended against a share of their reward.
- Payment for services and options implemented by TON Services, TON Storage, TON DNS, TON Proxy, TON WWW. In particular, for bypassing censorship, storing data, hiding identity, using blockchain-based domain names.

Toncoin Roadmap

Initial distribution of Toncoins was carried out spontaneously via PoW mining.

This type of distribution has obvious advantages like decentralization and equal conditions of obtaining coins for all.

Yet, there are challenges: risk of uneven distribution of coins, miner anonymity and zero knowledge of their further plans regarding the use of coins.

TON Foundation announces its **TON Nominators** component that will enable utilization of large number of Toncoin to increase the stability and scalability of TON Blockchain, while mitigating some of the threats related to PoW mining. Implementation of that component will benefit the overall network: the more coins are allocated to a more diversified group of enthusiasts who are willing to run validators, the more stable the network will get. We also expect that TON Nominators component will help to achieve further decentralization of the network: more new participants from different geographies will be able to join the network and benefit it as validators while receiving reward in Toncoins for their efforts.

TON Nominators Q4 2021

In Proof-of-Stake consensus network operations are carried out by validator nodes that verify suggested blocks and allow recording them in the blockchain.

Anyone can launch a validator node, but it takes a powerful server and a **serious** amount of Toncoins to make a stake.

TON Nominators allows lending Toncoins to hardware owners so they could start a validator node. Validation income is then distributed between the parties involved.

The smart-contract assures the proper use of coins and due distribution of profits in compliance with the agreed-upon conditions.

With TON Nominators one can start a validator node having less coins then needed or not having them at all. On the other hand, there is an opportunity for Toncoin holders to invest their assets and profit from validation without buying and maintaining hardware.

We envisage various service scenarios and configurations, but we expect that the most popular will be the one when a validator stakes the amount sufficient to cover potential penalties for poor work, while an investor (nominator) provides the bulk of the stake. 60% of the validation reward then goes to the investor and 40% to the validator node owner.

With more validators in the network and bigger collective validators stake, the network becomes more stable and secure.

After the launch of TON Nominators, the total number of validators may potentially top 400 with 1bn Toncoins locked in validations (about 20% of the total issue).

Note that nominators can only lend coins to owners of validator nodes, but they have no access to their hardware or software. Therefore, TON Nominators stimulates further decentralization.

TON Nominators for Bridging Oracles

TON-Ethereum and TON-Binance Smart Chain bridges resemble a small PoSblockchain (for more details see Appendix: Bridge operation principle). Just like validator nodes, bridging oracles have stakes that guarantee their fair operations and are rewarded by transfer fees.

TON Nominators is designed to enable coin holders to lend those to owners of oracle nodes in exchange for a share in their profits.

After the component is launched, the total oracles stake may potentially reach 100m Toncoins.

TON Foundation

After Telegram was forced to quit the project, the open-source developer community led by EmelyanenkoK and Anatoliy Makosov went on developing and supporting the blockchain sticking to the original whitepapers where possible.

By now over 40 independent non-incorporated developers from various geographies work on the project as TON Foundation not-for-proft community funded by donations. You can find their profiles on GitHub section People.

We welcome all developers to join TON Foundation and contribute to the technology.

Governance

TON design ensures that network modifications are only possible if approved by the majority of validators via Proof-of-Stake consensus.

There is no way to change network software, configuration or state bypassing the vote.

Roadmap

2

3

How Proof-of-Stake works

Becoming a TON network **validator** takes starting a specific software.

Anyone can do it; the more validators the better for the network.

An important prerequisite though is a high-performance server with strong connection operating 24/7.

A validator stakes their Toncoins for a specific term. This stake is paid back at the completion of a validation round with a surplus or validator **reward** for the effort.

Should a validator attempt to cheat or stay idle, their stake is fully or partially taken as a **penalty**.

Network validators verify user transactions. If all validators achieve consensus that a transaction is valid, it is included into the Blockchain. Invalid transactions are rejected.

Therefore, validators have to correctly process user transactions at maximum speed to get rewarded and avoid penalties.

 ∇

How validators achieve consensus

An ad hoc Byzantine Fault Tolerant Catchain protocol was developed to ensure that stakeholders achieve consensus as long as the number of cheaters among them is 1/3 or less.

Also, the protocol provides mathematical proofs of cheating attempts that is used as evidence for imposing penalties.

Validators reward

A user adds a small surplus amount in Toncoins that represents a fee paid to validators as a reward for their work. Reward is distributed proportionally to the effective stakes of the validators.

Additionally, new Toncoins are generated during validation. These also go to validators. Overall annual coin inflation is about 0.6%.

What if a validator tries cheating?

By design, any cheating attempt in the Catchain Protocol is instantly detected. Upon the receipt of a mathematical proof of cheating, other validators immediately stop interacting with a cheater node. Then validators hold an automated vote to fine the cheater that consequently loses its stake fully or partially.

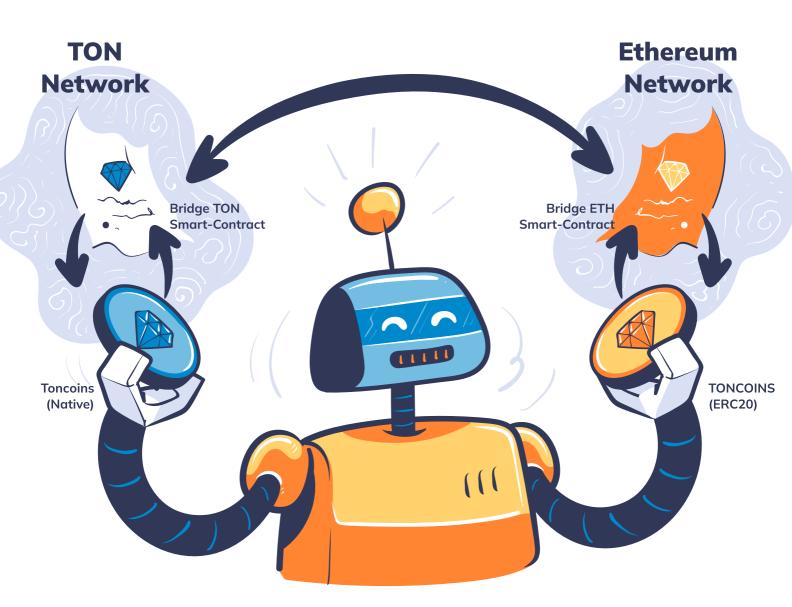
What if a validator underperforms or fails?

Each validator tracks processing statistics of other validators. If the number of transactions processed per period is too small for a particular node, validators collectively vote to fine it and it loses its stake fully or partially.

Summary

Validators maintain the system operations.

Any modification of the TON Blockchain requires consensus of all validators.


An inevitable penalty for cheating forces validators to comply with the consistent rules.

Appendix

Bridge operation principle

A decentralized bridge allows transferring Toncoins from the TON network to the Ethereum network and back effortlessly.

User

Transfer Toncoins

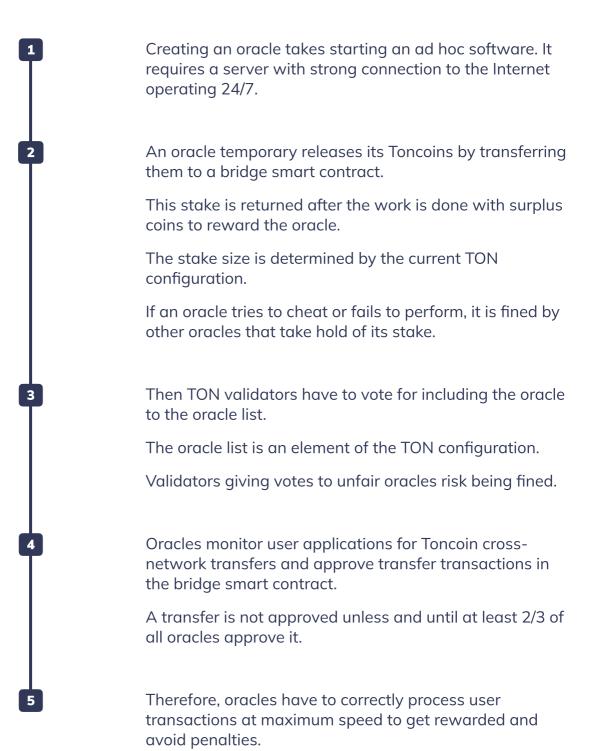
From TON network to Ethereum Network

From Ethereum Network to TON Network

A user sends their TONCOINS to an ad hoc Ethereum smart contract

These TONCOINS are burnt and a counterpart contract in the TON Blockchain network unlocks the same number of Toncoins.

TON Blockchain contract sends the coins to a user wallet.


The total number of coins remains unchanged

1

2

Bridge Oracles

Bridging is managed by oracles with PoS tools implemented to maintain system decentralization.

Oracle reward

A small fee (fraction of a percentage) is charged on each bridged transfer to reward oracles.

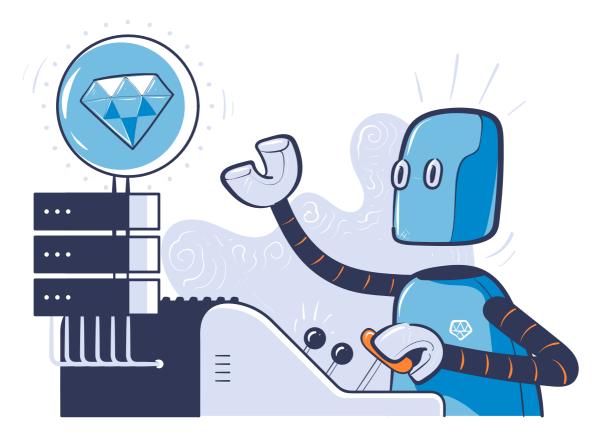
The fee size is a part of the Bridge smart contract.

The total collected fee is equally distributed between all oracles upon completion of work to reward them for maintaining the system operational.

What if an oracle tries cheating?

If an oracle approves a transfer amount different from the user original request, it is considered a cheating attempt.

And, given that a transfer is not performed unless approved by 2/3 of all oracles and invalid transaction will be rejected.


Once a rejected transaction is detected, other oracles vote for excluding the cheater from the oracle list and fining the culprit by taking their stake.

Also, validators that originally voted for including the cheater to the list can be fined.

Appendix

How mining works in TON

TON Blockchain uses the Proof-of-Stake consensus and mining is not required to generate new blocks.

So how come there is Proof-of-Work in TON?

Well, the reason is that the initial issue of 5bn Toncoins was transferred to ad hoc Proof-of-Work Giver smart contracts.

Mining is used to obtain Toncoins from this smart contract.

PoW Giver contracts have their limits and will dry out once users mine all available Toncoins.

Operation principle

Putting it in layman's terms, in any moment of time the PoW Giver contract has a computational puzzle, a challenge. Resolving it is rewarded by a fixed number of coins. Then a new challenge is generated. The only way to resolve the challenge is to brute-force numbers which takes serious computational resources.

If a puzzle is resolved too soon, the PoW Giver contract increases the complexity level which means more power needed to resolve it. Yet, if resolving took too much time, the complexity level is reduced. Thus, the PoW Giver contract maintains stable the number of coins given per day.

The more users participate in the process, the harder the task it. You have to both find a solution and do it faster than other participants.

How is it implemented?

In practice users launch ad hoc software that brute-forces numbers and sends suggested solutions to PoW Giver contracts. The higher is a performance of a miner's computer that operates this software, the higher probability of getting coins is.

The more miners there are in the network, the higher mining computational complexity is and the more computational power is required to mine coins.

ton.org

github.com/newton-blockchain

t.me/tonblockchain